摘要翻译:
核加性模型(KAM)是一种用于声源分离的框架,旨在显式地建模声源的固有特性,以帮助识别和分离声源。KAM通过对通过特定于源的核(通常是k-NN函数)获得的时频区间的选择应用稳健的统计量来分离给定的源。尽管参数k似乎是成功分离的关键,但在文献中很少讨论其影响或优化。在这里,我们提出了一种新的方法,基于图论统计,自动优化$k$,在一个声音分离任务。我们引入k-NN hubness作为一个指标,以较低的计算代价找到一个定制的k。随后,我们将我们的方法与选择K的常用方法进行比较。我们进一步讨论了这个参数的影响和重要性,并给出了有启发性的结果。
---
英文标题:
《Does k Matter? k-NN Hubness Analysis for Kernel Additive Modelling Vocal
Separation》
---
作者:
Delia Fano Yela, Dan Stowell and Mark Sandler
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Kernel Additive Modelling (KAM) is a framework for source separation aiming to explicitly model inherent properties of sound sources to help with their identification and separation. KAM separates a given source by applying robust statistics on the selection of time-frequency bins obtained through a source-specific kernel, typically the k-NN function. Even though the parameter k appears to be key for a successful separation, little discussion on its influence or optimisation can be found in the literature. Here we propose a novel method, based on graph theory statistics, to automatically optimise $k$ in a vocal separation task. We introduce the k-NN hubness as an indicator to find a tailored k at a low computational cost. Subsequently, we evaluate our method in comparison to the common approach to choose k. We further discuss the influence and importance of this parameter with illuminating results.
---
PDF链接:
https://arxiv.org/pdf/1804.02325