摘要翻译:
本文研究了具有高斯噪声或噪声分布未知的非参数异方差模型在给定点的回归函数估计问题。在这两种情况下,构造了极大极小绝对误差风险的渐近有效核估计。
---
英文标题:
《Asymptotically efficient estimators for nonparametric heteroscedastic
regression models》
---
作者:
Jean-Yves Brua (IRMA)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper concerns the estimation of the regression function at a given point in nonparametric heteroscedastic models with Gaussian noise or with noise having unknown distribution. In the two cases an asymptotically efficient kernel estimator is constructed for the minimax absolute error risk.
---
PDF链接:
https://arxiv.org/pdf/711.4725