摘要翻译:
ABC猜想根据代数点的判别式及其与无重数计数的射影线的固定因子的交,预言了代数点高度的一个高度非平凡的上界。我们描述了McQuillan和Yamanoi给出的函数域上强ABC猜想的两个独立证明。第一个证明依赖于微分和代数几何的工具;第二种方法依赖于分析和拓扑方法。它们分别对应于Nevanlinna第二主定理的Nevanlinna和Ahlfors方法。
---
英文标题:
《The strong $ABC$ conjecture over function fields (after McQuillan and
Yamanoi)》
---
作者:
Carlo Gasbarri
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
The $abc$ conjecture predicts a highly non trivial upper bound for the height of an algebraic point in terms of its discriminant and its intersection with a fixed divisor of the projective line counted without multiplicity. We describe the two independent proofs of the strong $abc$ conjecture over function fields given by McQuillan and Yamanoi. The first proof relies on tools from differential and algebraic geometry; the second relies on analytic and topological methods. They correspond respectively to the Nevanlinna and the Ahlfors approach to the Nevanlinna Second Main Theorem.
---
PDF链接:
https://arxiv.org/pdf/0811.3153