摘要翻译:
用重整化伽玛序分析了平均球面近似和自洽Ornstein-Zernike近似(SCOZA)与维里途径的热力学一致性。对于连续介质流体,这意味着在通常的SCOZA直接相关函数中增加一个短程贡献,并将可调参数从势项转移到这个新项。这种贡献的范围是通过在临界点与维里路线保持一致来确定的。对硬核Yukawa势的理论结果与模拟数据的比较表明,对于相对于固态而言,液汽相变稳定或不太进入亚稳区的情况,我们的结果非常吻合。在后一种情况下,对于极其短程的相互作用,会出现差异。
---
英文标题:
《Self-Consistent Ornstein-Zernike approximation for the Yukawa fluid with
improved direct correlation function》
---
作者:
Albert Reiner and Johan S. Hoye
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Thermodynamic consistency of the Mean Spherical Approximation as well as the Self-Consistent Ornstein-Zernike Approximation (SCOZA) with the virial route to thermodynamics is analyzed in terms of renormalized gamma-ordering. For continuum fluids this suggests the addition of a short-range contribution to the usual SCOZA direct correlation function, and the shift of the adjustable parameter from the potential term to this new term. The range of this contribution is fixed by imposing consistency with the virial route at the critical point. Comparison of the results of our theory for the hard-core Yukawa potential with simulation data show very good agreement for cases where the liquid-vapor transition is stable or not too far into the metastable region with respect to the solid state. In the latter case for extremely short-ranged interactions discrepancies arise.
---
PDF链接:
https://arxiv.org/pdf/712.3739