摘要翻译:
在含任意基轨迹$Z$的复射影三空间中,计算了极一般法曲面的类群,从而推广了经典的Noether-Lefschetz定理(当$Z$为空时)。我们的方法是Griffiths和Harris的退化证明的一个适应,通过上同调和基变化论点简化。我们给出了计算Picard群的应用,推广了几个已知的结果。
---
英文标题:
《Noether-Lefschetz theorem with base locus》
---
作者:
John Brevik and Scott Nollet
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We compute the class groups of very general normal surfaces in complex projective three-space containing an arbitrary base locus $Z$, thereby extending the classic Noether-Lefschetz theorem (the case when $Z$ is empty). Our method is an adaptation of Griffiths and Harris' degeneration proof, simplified by a cohomology and base change argument. We give applications to computing Picard groups, which generalize several known results.
---
PDF链接:
https://arxiv.org/pdf/0806.1243