摘要翻译:
神经元被单独转化为简单的门,以基于人类心理和智力来规划大脑。状态机,假设以前在潜意识联想记忆中学习,被证明能够在短期记忆中使用纳米处理来解决方程和基本思维。
---
英文标题:
《Artificial Brain Based on Credible Neural Circuits in a Human Brain》
---
作者:
John Robert Burger
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,
神经网络,感觉运动控制,行为,注意
--
---
英文摘要:
Neurons are individually translated into simple gates to plan a brain based on human psychology and intelligence. State machines, assumed previously learned in subconscious associative memory are shown to enable equation solving and rudimentary thinking using nanoprocessing within short term memory.
---
PDF链接:
https://arxiv.org/pdf/1008.5161