摘要翻译:
计算了连续欧几里德介质中存在单个次扩散陷阱或被次扩散陷阱海包围时球形目标的渐近生存概率。在一维和二维情况下,存在单个陷阱时目标的生存概率分别以幂律和对数修正的幂律衰减到零。这样,目标就肯定地达到了,但平均来说,陷阱需要无限长的时间才能达到目标。在三维中,单个陷阱可能永远无法到达目标,因此存活概率是有限的,事实上,并不取决于陷阱是扩散还是亚扩散运动。另一方面,当目标被陷阱包围时,它的生存概率在所有维度上都以拉伸指数的形式衰减($d=2$)。因此,陷阱将肯定地达到目标,并且将在有限的时间内达到目标。这些结果可能与在拥挤的细胞环境中酶与DNA的结合动力学有直接关系。
---
英文标题:
《The subdiffusive target problem: Survival probability》
---
作者:
Santos Bravo Yuste and Katja Lindenberg
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
The asymptotic survival probability of a spherical target in the presence of a single subdiffusive trap or surrounded by a sea of subdiffusive traps in a continuous Euclidean medium is calculated. In one and two dimensions the survival probability of the target in the presence of a single trap decays to zero as a power law and as a power law with logarithmic correction, respectively. The target is thus reached with certainty, but it takes the trap an infinite time on average to do so. In three dimensions a single trap may never reach the target and so the survival probability is finite and, in fact, does not depend on whether the traps move diffusively or subdiffusively. When the target is surrounded by a sea of traps, on the other hand, its survival probability decays as a stretched exponential in all dimensions (with a logarithmic correction in the exponent for $d=2$). A trap will therefore reach the target with certainty, and will do so in a finite time. These results may be directly related to enzyme binding kinetics on DNA in the crowded cellular environment.
---
PDF链接:
https://arxiv.org/pdf/709.3055