摘要翻译:
在前文(见[1,2])中,经典液体的超流动性是在参数$N$和$R$(其中$N$为粒子数,$R$为毛细管半径)分别趋于无穷大和零的假设下证明的,从而使$\frac1n\ll\fracrr$,其中$R$为毛细管长度。本文去掉了这一假设。
---
英文标题:
《Uniform Asymptotics in the Problem of Superfluidity of Classical Liquids
in Nanotubes》
---
作者:
V. P. Maslov
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In the preceding papers (see [1, 2]), the superfluidity of the classical liquid was proved under the assumption that the parameters $N$ and $r$, where $N$ is the particle number and $r$ it the capillary radius, tend respectively to infinity and to zero so that $\frac 1N \ll \frac rR$, where $R$ is the capillary length. In the present paper, this assumption is removed.
---
PDF链接:
https://arxiv.org/pdf/802.265