摘要翻译:
本文讨论了从一组观测变量的统计数据和以有向无环图形式编码的定性因果知识的组合中预测行动或干预对系统的影响的问题。DAG表示一组称为结构方程模型(SEM)的线性方程组,其系数是代表直接因果效应的参数。只有当因果效应由数据唯一确定时,才能从模型中得到可靠的定量结论。也就是说,如果模型存在唯一的参数化,使其与数据兼容。如果是这种情况,则该模型称为标识。本文的主要结果是递归SEM模型辨识的一般充分条件。
---
英文标题:
《Graphical Condition for Identification in recursive SEM》
---
作者:
Carlos Brito, Judea Pearl
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
  The paper concerns the problem of predicting the effect of actions or interventions on a system from a combination of (i) statistical data on a set of observed variables, and (ii) qualitative causal knowledge encoded in the form of a directed acyclic graph (DAG). The DAG represents a set of linear equations called Structural Equations Model (SEM), whose coefficients are parameters representing direct causal effects. Reliable quantitative conclusions can only be obtained from the model if the causal effects are uniquely determined by the data. That is, if there exists a unique parametrization for the model that makes it compatible with the data. If this is the case, the model is called identified. The main result of the paper is a general sufficient condition for identification of recursive SEM models. 
---
PDF链接:
https://arxiv.org/pdf/1206.6821