摘要翻译:
Kostant和Wallach在最近的工作(\cite{KW1},\cite{KW2})中,利用包络代数的Gelfand-Zeitlin子代数的Poisson模拟导出的完全可积系统,构造了一个单连通李群$a\simeq\mathbb{C}^{{n\choose 2}}$在$gl(n)$上的作用。在引用{KW1}中,作者证明了在$gl(n)$中,$a$-维数为${n选择2}$的正则伴随轨道的拉格朗日子流形。它们描述了正则半单元的某个Zariski开子集上$a$的轨道结构。本文用Gelfand-Zeitlin理论描述了维数为${n\choope2}$的所有$a$-轨道,并由此得到了正则伴随轨道的所有极化。
---
英文标题:
《The orbit structure of the Gelfand-Zeitlin group on n x n matrices》
---
作者:
Mark Colarusso
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Symplectic Geometry 辛几何
分类描述:Hamiltonian systems, symplectic flows, classical integrable systems
哈密顿系统,辛流,经典可积系统
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In recent work (\cite{KW1},\cite{KW2}), Kostant and Wallach construct an action of a simply connected Lie group $A\simeq \mathbb{C}^{{n\choose 2}}$ on $gl(n)$ using a completely integrable system derived from the Poisson analogue of the Gelfand-Zeitlin subalgebra of the enveloping algebra. In \cite{KW1}, the authors show that $A$-orbits of dimension ${n\choose 2}$ form Lagrangian submanifolds of regular adjoint orbits in $gl(n)$. They describe the orbit structure of $A$ on a certain Zariski open subset of regular semisimple elements. In this paper, we describe all $A$-orbits of dimension ${n\choose 2}$ and thus all polarizations of regular adjoint orbits obtained using Gelfand-Zeitlin theory.
---
PDF链接:
https://arxiv.org/pdf/0811.1351