摘要翻译:
模拟退火是马尔可夫链蒙特卡罗方法在求解代价函数已知的NP难优化问题中的最高荣耀。在这里,我们用一种强化学习变异--我们称之为Macau算法--来代替模拟退火的Metropolis引擎,我们证明了当代价函数未知并且必须由人工Agent学习时,模拟退火启发式也是非常有效的。
---
英文标题:
《Ergodic Annealing》
---
作者:
Carlo Baldassi, Fabio Maccheroni, Massimo Marinacci, Marco Pirazzini
---
最新提交年份:
2020
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics 统计学
二级分类:Machine Learning
机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Simulated Annealing is the crowning glory of Markov Chain Monte Carlo Methods for the solution of NP-hard optimization problems in which the cost function is known. Here, by replacing the Metropolis engine of Simulated Annealing with a reinforcement learning variation -- that we call Macau Algorithm -- we show that the Simulated Annealing heuristic can be very effective also when the cost function is unknown and has to be learned by an artificial agent.
---
PDF链接:
https://arxiv.org/pdf/2008.00234