摘要翻译:
深度学习方法在声音识别任务中取得了很高的性能。决定如何提供训练数据对于进一步提高性能很重要。提出了一种新颖的深度声音识别学习方法:类间学习(BC学习)。我们的策略是通过将类间语音识别为类间语音来学习判别特征空间。我们通过将属于不同类别的两个声音以随机比例混合来生成类间声音。然后我们将混合声音输入到模型中,训练模型输出混合比。BC学习的优点不仅限于增加训练数据的变化量;BC学习使特征空间中的Fisher准则得到了扩展,使类的特征分布之间的位置关系得到了正则化。实验结果表明,在各种声音识别网络、数据集和数据增强方案中,BC学习都提高了性能,其中BC学习总是有益的。此外,我们构造了一个新的深度声音识别网络(EnvNet-v2),并用BC学习对其进行训练。结果,我们取得了超越人类水平的性能。
---
英文标题:
《Learning from Between-class Examples for Deep Sound Recognition》
---
作者:
Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
Deep learning methods have achieved high performance in sound recognition tasks. Deciding how to feed the training data is important for further performance improvement. We propose a novel learning method for deep sound recognition: Between-Class learning (BC learning). Our strategy is to learn a discriminative feature space by recognizing the between-class sounds as between-class sounds. We generate between-class sounds by mixing two sounds belonging to different classes with a random ratio. We then input the mixed sound to the model and train the model to output the mixing ratio. The advantages of BC learning are not limited only to the increase in variation of the training data; BC learning leads to an enlargement of Fisher's criterion in the feature space and a regularization of the positional relationship among the feature distributions of the classes. The experimental results show that BC learning improves the performance on various sound recognition networks, datasets, and data augmentation schemes, in which BC learning proves to be always beneficial. Furthermore, we construct a new deep sound recognition network (EnvNet-v2) and train it with BC learning. As a result, we achieved a performance surpasses the human level.
---
PDF链接:
https://arxiv.org/pdf/1711.10282