摘要翻译:
我们把(同调的)动机的权重复合物,从而把Grothendieck动机群中的欧拉特征,与算术变体和Deligne-Mumford栈联系起来;这扩展了Crelle第478卷“下降、动机和K-理论”一文中的结果,其中类似的结果被证明在特征为零的域上的变种。我们使用具有有理系数的K_0动机,而不是Chow动机,因为我们不能诉诸于奇点的解析,而是必须使用de Jong的结果。另外,对于域上的变体,我们证明了权复的逆变性的一个一般结果,特别证明了变体间任何有限维数的态射都会诱导出权复的态射。
---
英文标题:
《Motivic Weight Complexes for Arithmetic Varieties》
---
作者:
Henri Gillet and Christophe Soul\'e
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We associate weight complexes of (homological) motives, and hence Euler characteristics in the Grothendieck group of motives, to arithmetic varieties and Deligne-Mumford stacks; this extends the results in the paper "Descent, Motives and K-theory" in volume 478 of Crelle, where a similar result was proved for varieties over a field of characteristic zero. We use K_0-motives with rational coefficients, rather than Chow motives, because we cannot appeal to resolution of singularities, but rather must use de Jong's results. In addition, for varieties over a field we prove a general result on contravariance of weight complexes, in particular showing that any morphism of finite tor-dimension between varieties induces a morphism of weight complexes. 
---
PDF链接:
https://arxiv.org/pdf/0804.4853