全部版块 我的主页
论坛 经济学人 二区 外文文献专区
207 0
2022-03-16
摘要翻译:
语音伪装是指有目的地改变说话人身份以避免被识别为自己,是一种低成本的欺骗说话人识别的方法,无论是由人还是由自动说话人验证(ASV)系统进行。我们对年龄成见作为一种声音伪装策略的有效性进行了评估,作为我们最近工作的后续行动,60名母语为芬兰语的人试图听起来像老人和孩子。在这项研究中,我们提供了证据,证明ASV和人类观察者都很容易错过目标说话者,但我们没有说明所呈现的声音年龄刻板印象有多可信;这项研究填补了这一空白。有趣的情况是,演讲者成功地被ASV系统遗漏了,而典型的听众无法察觉这是一种伪装。我们进行了一个感知测试来研究伪装语音样本的质量。听力测试是在当地进行的,也是在亚马逊的土耳其机械工人的帮助下进行的。共有91名听众参加了测试,并被要求估计演讲者的年龄和预期年龄。结果表明,对女性说话者的年龄估计与目标年龄组有关,而对男性说话者的年龄估计只与目标年龄组的方向有关。在预期儿童声音的情况下,听众估计男性说话者的年龄比大多数说话者的实际年龄大,而不是预期的目标年龄。
---
英文标题:
《Perceptual Evaluation of the Effectiveness of Voice Disguise by Age
  Modification》
---
作者:
Rosa Gonz\'alez Hautam\"aki, Anssi Kanervisto, Ville Hautam\"aki, Tomi
  Kinnunen
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science        计算机科学
二级分类:Computers and Society        计算机与社会
分类描述:Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7.
涵盖计算机对社会的影响、计算机伦理、信息技术和公共政策、计算机的法律方面、计算机和教育。大致包括ACM学科类K.0、K.2、K.3、K.4、K.5和K.7中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Voice disguise, purposeful modification of one's speaker identity with the aim of avoiding being identified as oneself, is a low-effort way to fool speaker recognition, whether performed by a human or an automatic speaker verification (ASV) system. We present an evaluation of the effectiveness of age stereotypes as a voice disguise strategy, as a follow up to our recent work where 60 native Finnish speakers attempted to sound like an elderly and like a child. In that study, we presented evidence that both ASV and human observers could easily miss the target speaker but we did not address how believable the presented vocal age stereotypes were; this study serves to fill that gap. The interesting cases would be speakers who succeed in being missed by the ASV system, and which a typical listener cannot detect as being a disguise. We carry out a perceptual test to study the quality of the disguised speech samples. The listening test was carried out both locally and with the help of Amazon's Mechanical Turk (MT) crowd-workers. A total of 91 listeners participated in the test and were instructed to estimate both the speaker's chronological and intended age. The results indicate that age estimations for the intended old and child voices for female speakers were towards the target age groups, while for male speakers, the age estimations corresponded to the direction of the target voice only for elderly voices. In the case of intended child's voice, listeners estimated the age of male speakers to be older than their chronological age for most of the speakers and not the intended target age.
---
PDF链接:
https://arxiv.org/pdf/1804.0891
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群