全部版块 我的主页
论坛 经济学人 二区 外文文献专区
419 0
2022-03-16
摘要翻译:
参考版本将出现在密歇根数学杂志上。前一版本最后一节中的一个错误已被更正。新标题准确地描述了所取得的主要结果。在三次曲面几何和Dolgachev定理的基础上,证明了本文所述模空间R的合理性。设M是平面上6个点的模空间,是三次曲面上由双六构型引起的自然对合的模。证明了R是以M为结尾的局部平凡射影丛的一个塔的双生的,从而证明了R的合理性是由Dolgachev定理得出的:M是有理的。
---
英文标题:
《The rationality of the moduli space of genus four curves endowed with an
  order three subgroup of their Jacobian》
---
作者:
Ingrid Bauer, Alessandro Verra
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Refereed version to appear in Michigan Mathematical Journal. A mistake in the last section of the previous version has been corrected. The new title exactly describes the main result obtained. Building on the geometry of cubic surfaces and on a theorem of Dolgachev, the rationality of the moduli space R mentioned in the title is proved. Let M be the moduli space of 6 points in the plane, modulo the natural involution induced by double-six configurations on cubic surfaces. It is proved that R is birational to a tower of locally trivial projective bundles ending onto M. The rationality of R then follows from Dolgachev's theorem that M is rational.
---
PDF链接:
https://arxiv.org/pdf/0808.1318
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群