摘要翻译:
本文从一个新的角度对相位恢复问题进行了重新的探讨和研究。特别地,我们建立了相位恢复问题和传感器网络定位问题之间的联系,这使得我们可以利用关于后者的大量理论和算法文献来解决前者。利用这种联系,我们开发了一个两阶段的相位恢复算法,可以证明恢复所需的信号。在稀疏和稠密情况下,我们提出的算法在恢复所需的测量数和重建时间上都同时改进了现有的方法。我们给出的数值结果证实了我们的理论,并证明了所提算法的有效性。作为附带结果,我们提出了一种新形式的相位恢复问题,并将其与Gortler和Thurston提出的复刚度理论联系起来。
---
英文标题:
《Phase Retrieval via Sensor Network Localization》
---
作者:
Sherry Xue-Ying Ni, Man-Chung Yue, Kam-Fung Cheung and Anthony Man-Cho
So
---
最新提交年份:
2018
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Metric Geometry 度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
---
英文摘要:
The problem of phase retrieval is revisited and studied from a fresh perspective. In particular, we establish a connection between the phase retrieval problem and the sensor network localization problem, which allows us to utilize the vast theoretical and algorithmic literature on the latter to tackle the former. Leveraging this connection, we develop a two-stage algorithm for phase retrieval that can provably recover the desired signal. In both sparse and dense settings, our proposed algorithm improves upon prior approaches simultaneously in the number of required measurements for recovery and the reconstruction time. We present numerical results to corroborate our theory and to demonstrate the efficiency of the proposed algorithm. As a side result, we propose a new form of phase retrieval problem and connect it to the complex rigidity theory proposed by Gortler and Thurston.
---
PDF链接:
https://arxiv.org/pdf/1803.07818