全部版块 我的主页
论坛 经济学人 二区 外文文献专区
579 0
2022-03-16
摘要翻译:
关于电动汽车携带的电能的时空模式的信息,而不是电动汽车本身,对于电动汽车与智能电网建立更有效和智能的交互至关重要。本文提出了一个基于电能时空分布模式的预测框架,用于预测不同城市尺度区域内大量电动汽车所储存的电能。空间模式采用基于神经网络的空间预测器建模,时间模式采用基于线性链条件随机场(CRF)的时间预测器捕获。两个预测因子分别加入了空间和时间特征,这些特征是基于北京真实轨迹数据提取的。此外,我们利用一个最优组合系数将两个预测因子结合起来,以使预测的归一化均方误差(NMSE)最小化,从而建立时空预测因子。通过大量的空间预测和时间预测实验,以及联合时空预测所取得的改进,对预测性能进行了评估。实验结果表明,对于北京市所有调查区域,时空预测器的NMSE均保持在0.1以下。我们进一步对预测进行了可视化,并讨论了该框架对智能电网调度和电动汽车充电的潜在好处。
---
英文标题:
《Energy Spatio-Temporal Pattern Prediction for Electric Vehicle Networks》
---
作者:
Qinglong Wang
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Information about the spatio-temporal pattern of electricity energy carried by EVs, instead of EVs themselves, is crucial for EVs to establish more effective and intelligent interactions with the smart grid. In this paper, we propose a framework for predicting the amount of the electricity energy stored by a large number of EVs aggregated within different city-scale regions, based on spatio-temporal pattern of the electricity energy. The spatial pattern is modeled via using a neural network based spatial predictor, while the temporal pattern is captured via using a linear-chain conditional random field (CRF) based temporal predictor. Two predictors are fed with spatial and temporal features respectively, which are extracted based on real trajectories data recorded in Beijing. Furthermore, we combine both predictors to build the spatio-temporal predictor, by using an optimal combination coefficient which minimizes the normalized mean square error (NMSE) of the predictions. The prediction performance is evaluated based on extensive experiments covering both spatial and temporal predictions, and the improvement achieved by the combined spatio-temporal predictor. The experiment results show that the NMSE of the spatio-temporal predictor is maintained below 0.1 for all investigate regions of Beijing. We further visualize the prediction and discuss the potential benefits can be brought to smart grid scheduling and EV charging by utilizing the proposed framework.
---
PDF链接:
https://arxiv.org/pdf/1802.04931
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群