摘要翻译:
给定一个具有最多为$ωn$的序数型生成元的极小系统和有理秩$r$的正增条件的好序半群$\gamma$,我们构造了一个以$r$变量的多项式环为中心的零维值,使得该多项式环的值的半群等于$\gamma$。该构造使用了Favre和Jonsson的Maclane键多项式序列的推广。
---
英文标题:
《Realization of a certain class of semi-groups as value semi-groups of
valuations》
---
作者:
M. Moghaddam
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
Given a well-ordered semi-group $\Gamma$ with a minimal system of generators of ordinal type at most $\omega n$ and of rational rank $r$, which satisfies a positivity and increasing condition, we construct a zero-dimensional valuation centered on the ring of polynomials with $r$ variables such that the semi-group of the values of the polynomial ring is equal to $\Gamma$. The construction uses a generalization of Favre and Jonsson's version of MacLane's sequence of key-polynomials.
---
PDF链接:
https://arxiv.org/pdf/0805.4056