全部版块 我的主页
论坛 经济学人 二区 外文文献专区
390 0
2022-03-17
摘要翻译:
本文考虑混合混合网络(HMN),它是一种混合贝叶斯网络,允许离散确定性信息以约束的形式显式建模。为了解决HMNs建模和推理的复杂性,我们提出了两种HMNs近似推理算法,它们集成和调整了广义信念传播、Rao-Blackwellised重要抽样和约束传播等算法原理。我们在随机生成的HMN上证明了我们的近似推理算法的性能。
---
英文标题:
《Approximate Inference Algorithms for Hybrid Bayesian Networks with
  Discrete Constraints》
---
作者:
Vibhav Gogate, Rina Dechter
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  In this paper, we consider Hybrid Mixed Networks (HMN) which are Hybrid Bayesian Networks that allow discrete deterministic information to be modeled explicitly in the form of constraints. We present two approximate inference algorithms for HMNs that integrate and adjust well known algorithmic principles such as Generalized Belief Propagation, Rao-Blackwellised Importance Sampling and Constraint Propagation to address the complexity of modeling and reasoning in HMNs. We demonstrate the performance of our approximate inference algorithms on randomly generated HMNs.
---
PDF链接:
https://arxiv.org/pdf/1207.1385
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群