摘要翻译:
提出了一种利用变量间影响符号的先验知识学习贝叶斯网络参数的方法。我们的方法不仅适用于标准符号,而且还提供了特定于上下文的符号。我们展示了各种符号如何转化为网络参数的顺序约束,以及如何使用等张回归从可用数据中计算顺序约束估计。我们的实验结果表明,考虑影响信号的先验知识可以提高真实分布的拟合程度,尤其是在只有少量样本数据的情况下。此外,计算的估计值保证与指定的符号一致,从而产生一个更有可能被其应用领域的专家接受的网络。
---
英文标题:
《Learning Bayesian Network Parameters with Prior Knowledge about
Context-Specific Qualitative Influences》
---
作者:
Ad Feelders, Linda C. van der Gaag
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
We present a method for learning the parameters of a Bayesian network with prior knowledge about the signs of influences between variables. Our method accommodates not just the standard signs, but provides for context-specific signs as well. We show how the various signs translate into order constraints on the network parameters and how isotonic regression can be used to compute order-constrained estimates from the available data. Our experimental results show that taking prior knowledge about the signs of influences into account leads to an improved fit of the true distribution, especially when only a small sample of data is available. Moreover, the computed estimates are guaranteed to be consistent with the specified signs, thereby resulting in a network that is more likely to be accepted by experts in its domain of application.
---
PDF链接:
https://arxiv.org/pdf/1207.1387