摘要翻译:
我们证明了任何平坦的G-丛,其中G是复连通约化代数群,在穿孔盘上允许OPER的结构。这一结果对于ARXIV:Math/0508382中提出的局部几何Langlands对应关系具有重要意义。我们的证明使用了仿射Springer纤维的某些变形,这可能是独立感兴趣的。作为副产品,我们在这些变形的同调上构造了仿射Weyl群的表示,推广了Lusztig构造的表示。
---
英文标题:
《Any flat bundle on a punctured disc has an oper structure》
---
作者:
Edward Frenkel, Xinwen Zhu
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
---
英文摘要:
We prove that any flat G-bundle, where G is a complex connected reductive algebraic group, on the punctured disc admits the structure of an oper. This result is important in the local geometric Langlands correspondence proposed in arXiv:math/0508382. Our proof uses certain deformations of the affine Springer fibers which could be of independent interest. As a byproduct, we construct representations of affine Weyl groups on the homology of these deformations generalizing representations constructed by Lusztig.
---
PDF链接:
https://arxiv.org/pdf/0811.3186