全部版块 我的主页
论坛 经济学人 二区 外文文献专区
337 0
2022-03-18
摘要翻译:
在自动驾驶的背景下,在计算机发出接管请求的情况下,人类可能需要接管,实现驾驶安全的关键一步是监控手,以确保司机为这种请求做好准备。这项工作,侧重于这一过程的第一步,即定位手。这样的系统必须在各种恶劣的光照条件下实时工作。本文在原有的OpenPose工作的基础上,提出了一种快速的ConvNet方法,用于全身关节的估计。该网络以较少的参数进行修改,并使用我们自己的日间自然主义自动驾驶数据集进行重新训练,以估计驾驶员和乘客手腕和肘部的关节和亲和力热图,总共8个关节类别和每个腕肘对之间的部分亲和力场。该方法在多名司机和乘客身上以40 fps的速度实时运行真实世界的数据。该系统在定性和定量方面都得到了广泛的评价,在关节定位和臂角估计方面显示了至少95%的检测性能。
---
英文标题:
《Looking at Hands in Autonomous Vehicles: A ConvNet Approach using Part
  Affinity Fields》
---
作者:
Kevan Yuen and Mohan M. Trivedi
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--

---
英文摘要:
  In the context of autonomous driving, where humans may need to take over in the event where the computer may issue a takeover request, a key step towards driving safety is the monitoring of the hands to ensure the driver is ready for such a request. This work, focuses on the first step of this process, which is to locate the hands. Such a system must work in real-time and under varying harsh lighting conditions. This paper introduces a fast ConvNet approach, based on the work of original work of OpenPose for full body joint estimation. The network is modified with fewer parameters and retrained using our own day-time naturalistic autonomous driving dataset to estimate joint and affinity heatmaps for driver & passenger's wrist and elbows, for a total of 8 joint classes and part affinity fields between each wrist-elbow pair. The approach runs real-time on real-world data at 40 fps on multiple drivers and passengers. The system is extensively evaluated both quantitatively and qualitatively, showing at least 95% detection performance on joint localization and arm-angle estimation.
---
PDF链接:
https://arxiv.org/pdf/1804.01176
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群