全部版块 我的主页
论坛 经济学人 二区 外文文献专区
418 0
2022-03-18
摘要翻译:
本文提出了一种神经文本到语音(TTS)模型,该模型只需少量的语音样本就能模拟新说话人的语音。我们仅使用一个6秒长的语音样本来演示语音模仿,而没有任何其他信息,如抄本。我们的模型还可以在不对模型进行额外训练的情况下立即进行语音模仿。我们将说话人嵌入网络与TTS模型Tacotron相结合,实现了语音模拟TTS模型。说话人嵌入网络获取新说话人的语音样本并返回说话人嵌入。嵌入目标句子的说话人被馈送到Tacotron,并用新说话人的声音生成语音。结果表明,通过说话人嵌入网络提取的说话人嵌入信息能够反映不同语音中的潜在结构。从我们的模型中生成的语音样本具有与从现有的多说话人TTS模型中生成的语音质量相当的语音质量。
---
英文标题:
《Voice Imitating Text-to-Speech Neural Networks》
---
作者:
Younggun Lee, Taesu Kim, Soo-Young Lee
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  We propose a neural text-to-speech (TTS) model that can imitate a new speaker's voice using only a small amount of speech sample. We demonstrate voice imitation using only a 6-seconds long speech sample without any other information such as transcripts. Our model also enables voice imitation instantly without additional training of the model. We implemented the voice imitating TTS model by combining a speaker embedder network with a state-of-the-art TTS model, Tacotron. The speaker embedder network takes a new speaker's speech sample and returns a speaker embedding. The speaker embedding with a target sentence are fed to Tacotron, and speech is generated with the new speaker's voice. We show that the speaker embeddings extracted by the speaker embedder network can represent the latent structure in different voices. The generated speech samples from our model have comparable voice quality to the ones from existing multi-speaker TTS models.
---
PDF链接:
https://arxiv.org/pdf/1806.00927
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群