摘要翻译:
近年来,递归神经网络已成为自动语音识别声学建模的前沿技术。其中最受欢迎的是长短时记忆单元。然而,在一些出版物中,诸如门控循环单元(GRU)及其修改的替代单元优于LSTM。在本文中,我们比较了五种神经网络(NN)结构和各种自适应和特征归一化技术。我们评估了特征空间最大似然线性回归,五种I向量自适应的变体和两种倒峰均值归一化的变体。前馈
神经网络的自适应和归一化技术最多,根据本文的结果,并不是所有的自适应和归一化技术都适用于RNNs。为了进行实验,我们选择了一个众所周知的、可用的TIMIT电话识别任务。与复杂语言模型的大词汇量任务相比,电话识别对AM的质量更加敏感。此外,我们还发布了开源脚本,以方便地复制结果,并帮助继续开发。
---
英文标题:
《A Comparison of Adaptation Techniques and Recurrent Neural Network
Architectures》
---
作者:
Jan Vanek, Josef Michalek, Jan Zelinka, Josef Psutka
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Computation and Language 计算与语言
分类描述:Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
涵盖自然语言处理。大致包括ACM科目I.2.7类的材料。请注意,人工语言(编程语言、逻辑学、形式系统)的工作,如果没有明确地解决广义的自然语言问题(自然语言处理、计算语言学、语音、文本检索等),就不适合这个领域。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
Recently, recurrent neural networks have become state-of-the-art in acoustic modeling for automatic speech recognition. The long short-term memory (LSTM) units are the most popular ones. However, alternative units like gated recurrent unit (GRU) and its modifications outperformed LSTM in some publications. In this paper, we compared five neural network (NN) architectures with various adaptation and feature normalization techniques. We have evaluated feature-space maximum likelihood linear regression, five variants of i-vector adaptation and two variants of cepstral mean normalization. The most adaptation and normalization techniques were developed for feed-forward NNs and, according to results in this paper, not all of them worked also with RNNs. For experiments, we have chosen a well known and available TIMIT phone recognition task. The phone recognition is much more sensitive to the quality of AM than large vocabulary task with a complex language model. Also, we published the open-source scripts to easily replicate the results and to help continue the development.
---
PDF链接:
https://arxiv.org/pdf/1807.06441