摘要翻译:
无线分布式系统在传感器网络、物联网和信息物理系统中的应用对资源效率提出了很高的要求。在网络边缘对数据进行先进的预处理和分类,有助于减少通信需求,减少需要集中处理的数据量。在分布式声传感领域,具有高分类率的算法和资源受限的嵌入式系统的结合是必不可少的。不幸的是,声学事件检测算法具有很高的内存和计算需求,不适合在网络边缘执行。本文通过对一个用于音频事件检测的卷积
神经网络进行结构优化,使存储量减少了500倍以上,计算量减少了2.1倍,性能提高了9.2%。
---
英文标题:
《Efficient Convolutional Neural Network For Audio Event Detection》
---
作者:
Matthias Meyer, Lukas Cavigelli, Lothar Thiele
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
Wireless distributed systems as used in sensor networks, Internet-of-Things and cyber-physical systems, impose high requirements on resource efficiency. Advanced preprocessing and classification of data at the network edge can help to decrease the communication demand and to reduce the amount of data to be processed centrally. In the area of distributed acoustic sensing, the combination of algorithms with a high classification rate and resource-constraint embedded systems is essential. Unfortunately, algorithms for acoustic event detection have a high memory and computational demand and are not suited for execution at the network edge. This paper addresses these aspects by applying structural optimizations to a convolutional neural network for audio event detection to reduce the memory requirement by a factor of more than 500 and the computational effort by a factor of 2.1 while performing 9.2% better.
---
PDF链接:
https://arxiv.org/pdf/1709.09888