摘要翻译:
我们描述了一个计算离散概率规划边际分布的动态规划算法。该算法对任意概率编程语言采用函数解释器,并将其转化为有效的边际化器。因为在递归的情况下不可能直接缓存子分布,所以我们建立了子分布之间的依赖关系图。这种因数和积网络使子问题之间的依赖关系(潜在的循环)显式化,并对应于边际分布的方程组。我们用拓扑顺序的不动点迭代来求解这些方程。我们通过在概率模型教学、计算认知科学研究和博弈论中使用的例子来说明该算法。
---
英文标题:
《A Dynamic Programming Algorithm for Inference in Recursive Probabilistic
Programs》
---
作者:
Andreas Stuhlm\"uller, Noah D. Goodman
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Data Structures and Algorithms 数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--
---
英文摘要:
We describe a dynamic programming algorithm for computing the marginal distribution of discrete probabilistic programs. This algorithm takes a functional interpreter for an arbitrary probabilistic programming language and turns it into an efficient marginalizer. Because direct caching of sub-distributions is impossible in the presence of recursion, we build a graph of dependencies between sub-distributions. This factored sum-product network makes (potentially cyclic) dependencies between subproblems explicit, and corresponds to a system of equations for the marginal distribution. We solve these equations by fixed-point iteration in topological order. We illustrate this algorithm on examples used in teaching probabilistic models, computational cognitive science research, and game theory.
---
PDF链接:
https://arxiv.org/pdf/1206.3555