摘要翻译:
在全频率复用的密集无线网络中,干扰链路的优化调度是一项具有挑战性的任务。传统的调度方法是先估计所有干扰信道的强度,然后根据该模型优化调度。然而,这种基于模型的方法由于在密集网络中信道估计代价昂贵,资源密集且计算困难;此外,甚至要找到所得到的优化问题的局部最优解可能在计算上是复杂的。由于在许多传播环境中,无线信道强度在很大程度上是与距离相关的路径损耗的函数,因此使用深度学习方法可以绕过信道估计,并仅根据发送端和接收端的地理位置来有效地调度链路。这是通过在随机部署的网络上进行无监督训练来实现的,并通过使用一种新的神经网络结构来计算干扰或被干扰的邻近节点的地理空间卷积以及随后的多个反馈阶段来学习最优解。所得到的
神经网络在求和率最大化方面具有接近最优的性能,并且能够推广到更大的部署区域和不同链路密度的部署。此外,为了提供公平性,本文提出了一种新的调度方法,在明智选择的链路子集上利用和率最优调度算法来最大化网络上的比例公平性目标。该方法显示了高度竞争性和可推广的网络效用最大化结果。
---
英文标题:
《Spatial Deep Learning for Wireless Scheduling》
---
作者:
Wei Cui, Kaiming Shen, Wei Yu
---
最新提交年份:
2021
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
The optimal scheduling of interfering links in a dense wireless network with full frequency reuse is a challenging task. The traditional method involves first estimating all the interfering channel strengths then optimizing the scheduling based on the model. This model-based method is however resource intensive and computationally hard because channel estimation is expensive in dense networks; furthermore, finding even a locally optimal solution of the resulting optimization problem may be computationally complex. This paper shows that by using a deep learning approach, it is possible to bypass the channel estimation and to schedule links efficiently based solely on the geographic locations of the transmitters and the receivers, due to the fact that in many propagation environments, the wireless channel strength is largely a function of the distance dependent path-loss. This is accomplished by unsupervised training over randomly deployed networks, and by using a novel neural network architecture that computes the geographic spatial convolutions of the interfering or interfered neighboring nodes along with subsequent multiple feedback stages to learn the optimum solution. The resulting neural network gives near-optimal performance for sum-rate maximization and is capable of generalizing to larger deployment areas and to deployments of different link densities. Moreover, to provide fairness, this paper proposes a novel scheduling approach that utilizes the sum-rate optimal scheduling algorithm over judiciously chosen subsets of links for maximizing a proportional fairness objective over the network. The proposed approach shows highly competitive and generalizable network utility maximization results.
---
PDF链接:
https://arxiv.org/pdf/1808.01486