摘要翻译:
do-calculus于1995年发展起来,用于在非参数模型中识别因果效应。[Huang and Valtorta,2006]和[Shpitser and Pearl,2006]的完备性证明和[Tian and Shpitser,2010]的图解准则解决了这一识别问题。最近的探索揭示了do-calculus在另外三个领域的有用性:中介分析[Pearl,2012]、可移植性[Pearl和Bareinboim,2011]和元合成。综合集成(Meta-synthesis)是一项任务,它是将在异质群体和不同条件下进行的多项不同研究的经验结果融合在一起,从而综合出在某些目标环境中可能不同于正在研究的因果关系的估计值。talk调查了这些结果,强调了元综合带来的挑战。有关背景资料,请参阅http://bayes.cs.ucla.edu/csl_papers.html
---
英文标题:
《The Do-Calculus Revisited》
---
作者:
Judea Pearl
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
The do-calculus was developed in 1995 to facilitate the identification of causal effects in non-parametric models. The completeness proofs of [Huang and Valtorta, 2006] and [Shpitser and Pearl, 2006] and the graphical criteria of [Tian and Shpitser, 2010] have laid this identification problem to rest. Recent explorations unveil the usefulness of the do-calculus in three additional areas: mediation analysis [Pearl, 2012], transportability [Pearl and Bareinboim, 2011] and metasynthesis. Meta-synthesis (freshly coined) is the task of fusing empirical results from several diverse studies, conducted on heterogeneous populations and under different conditions, so as to synthesize an estimate of a causal relation in some target environment, potentially different from those under study. The talk surveys these results with emphasis on the challenges posed by meta-synthesis. For background material, see http://bayes.cs.ucla.edu/csl_papers.html
---
PDF链接:
https://arxiv.org/pdf/1210.4852