全部版块 我的主页
论坛 经济学人 二区 外文文献专区
348 0
2022-03-19
摘要翻译:
本文提出了一种结合不同数据源的大型Web站点用户建模方法:将访问日志和访问页面的内容与关于Web页面、用户和用户访问Web站点的语义信息结合起来。假设我们处理的是一个向大量访问该网站的用户提供内容的大型Web站点。该方法通过从不同数据源中提取的一组特征来表示每个用户,其中一些用户可能缺少一些特征值。它还使得能够基于所提供的目标用户子集的特征进行用户建模。在实际数据中,我们比较了当使用不同的数据源表示用户时,用户自动分配到预定义用户段的性能。
---
英文标题:
《User Modeling Combining Access Logs, Page Content and Semantics》
---
作者:
Blaz Fortuna, Dunja Mladenic, Marko Grobelnik
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Retrieval        信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Human-Computer Interaction        人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--

---
英文摘要:
  The paper proposes an approach to modeling users of large Web sites based on combining different data sources: access logs and content of the accessed pages are combined with semantic information about the Web pages, the users and the accesses of the users to the Web site. The assumption is that we are dealing with a large Web site providing content to a large number of users accessing the site. The proposed approach represents each user by a set of features derived from the different data sources, where some feature values may be missing for some users. It further enables user modeling based on the provided characteristics of the targeted user subset. The approach is evaluated on real-world data where we compare performance of the automatic assignment of a user to a predefined user segment when different data sources are used to represent the users.
---
PDF链接:
https://arxiv.org/pdf/1103.5002
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群