摘要翻译:
语义Web倡议主要强调的不是将数据放在Web上,而是以一种人类和机器都可以探索数据Web的方式创建链接。当这些用户访问Web时,他们会在Web服务器维护请求历史记录时留下痕迹。鉴于日志在资源注释、个性化、预测等方面的巨大潜力,自Web诞生以来,人们一直在研究Web使用挖掘方法。然而,任何此类工作的影响都没有真正超出生成统计数据的范围,这些统计数据详细描述了谁、何时以及如何访问由Web服务器维护的Web页面。
---
英文标题:
《From Linked Data to Relevant Data -- Time is the Essence》
---
作者:
Markus Kirchberg, Ryan K L Ko, Bu Sung Lee
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Information Retrieval        信息检索
分类描述:Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
涵盖索引,字典,检索,内容和分析。大致包括ACM主题课程H.3.0、H.3.1、H.3.2、H.3.3和H.3.4中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Human-Computer Interaction        人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--
---
英文摘要:
  The Semantic Web initiative puts emphasis not primarily on putting data on the Web, but rather on creating links in a way that both humans and machines can explore the Web of data. When such users access the Web, they leave a trail as Web servers maintain a history of requests. Web usage mining approaches have been studied since the beginning of the Web given the log's huge potential for purposes such as resource annotation, personalization, forecasting etc. However, the impact of any such efforts has not really gone beyond generating statistics detailing who, when, and how Web pages maintained by a Web server were visited. 
---
PDF链接:
https://arxiv.org/pdf/1103.5046