摘要翻译:
我们描述了具有有理基和常数$J$-不变量的1次椭圆三重形可能的Mordell-Weil群。此外,如果$J$-不变量为非零,我们将所有这类椭圆三元进行分类。我们可以用这种分类来描述$\ps(2,3,1,1,1)$中的一类不允许Hodge结构变化的奇异超曲面。
---
英文标题:
《On the classification of degree 1 elliptic threefolds with constant
$j$-invariant》
---
作者:
Remke Kloosterman
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We describe the possible Mordell-Weil groups for degree 1 elliptic threefold with rational base and constant $j$-invariant. Moreover, we classify all such elliptic threefolds if the $j$-invariant is nonzero. We can use this classification to describe a class of singular hypersurfaces in $\Ps(2,3,1,1,1)$ that admit no variation of Hodge structure.
---
PDF链接:
https://arxiv.org/pdf/0812.3014