摘要翻译:
本文利用余维数大于C的轮的全子范畴,讨论了不可约光滑射影簇上的相干轮范畴的商范畴。原来这个范畴有同调维数C。作为这一结论的应用,我们将描述C=1情形下它的导出范畴上的稳定性条件空间。此外,在这种特殊情况下,我们还描述了这些商范畴之间的所有精确等价,这种特殊情况与双形几何中的分类问题密切相关。
---
英文标题:
《Quotient categories, stability conditions, and birational geometry》
---
作者:
Sven Meinhardt, Holger Partsch
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This article deals with the quotient category of the category of coherent sheaves on an irreducible smooth projective variety by the full subcategory of sheaves supported in codimension greater than c. It turns out that this category has homological dimension c. As an application of this, we will describe the space of stability conditions on its derived category in the case c=1. Moreover, we describe all exact equivalences between these quotient categories in this particular case which is closely related to classification problems in birational geometry.
---
PDF链接:
https://arxiv.org/pdf/0805.0492