摘要翻译:
这里我们证明了每个紧致光滑4-流形X都有一个破碎的Lefschetz纤维(简称BLF)的结构。此外,如果b_{2}^{+}(X)>0,则它还具有一个具有非空基轨迹的断裂Lefschetz铅笔结构(BLP)。这是Auroux、Donaldson和Katzarkov的一个定理,我们的证明是拓扑的(即使用四维手柄理论)。
---
英文标题:
《Every 4-Manifold is BLF》
---
作者:
Selman Akbulut and Cagri Karakurt
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Here we show that every compact smooth 4-manifold X has a structure of a Broken Lefschetz Fibration (BLF in short). Furthermore, if b_{2}^{+}(X)> 0 then it also has a Broken Lefschetz Pencil structure (BLP) with nonempty base locus. This imroves a Theorem of Auroux, Donaldson and Katzarkov, and our proof is topological (i.e. uses 4-dimensional handlebody theory).
---
PDF链接:
https://arxiv.org/pdf/0803.2297