摘要翻译:
本文应用L.Allermann和J.Rau提出的热带交集理论,计算了有理热带曲线模空间上热带PSI类的交集积。证明了在零维(稳定)交的情况下,所得交数与代数几何中计算的n标记有理曲线模空间上PSI-类的交数一致。
---
英文标题:
《Intersecting Psi-classes on tropical M_{0,n}》
---
作者:
Michael Kerber, Hannah Markwig
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
---
英文摘要:
  We apply the tropical intersection theory developed by L. Allermann and J. Rau to compute intersection products of tropical Psi-classes on the moduli space of rational tropical curves. We show that in the case of zero-dimensional (stable) intersections, the resulting numbers agree with the intersection numbers of Psi-classes on the moduli space of n-marked rational curves computed in algebraic geometry. 
---
PDF链接:
https://arxiv.org/pdf/0709.3953