摘要翻译:
全球流量需求的增加,特别是在数据中心的短距离链路中,将要求光通信系统继续以加速的速度扩展。然而,能量限制开始限制在数据中心的最短距离和超长海底链路的最长距离光学系统上传输的比特率。数据中心中的短距离链路在功耗、大小和成本方面面临严格的限制,这将要求低功耗解决方案能够扩展到每波长100 Gbit/s以上的比特率,同时适应由于更长的光纤设备、更多波长的复用以及可能的光交换而增加的损耗。在最远的距离上,长于约5000公里的海底光缆由于海岸的供电限制而面临能量限制,这限制了海底光放大器可用的电力,最终限制了每根光纤的光功率和吞吐量。本文提出了减少这些限制的策略。对于数据中心的短距离链路,我们提出了完全避免高速模数转换器和数字信号处理器的低功耗相干接收机架构。对于长距离海底链路,我们演示了如何在放大器功率约束下优化信道功率分配以使每根光纤的信息论容量最大化。
---
英文标题:
《Spectrally and Power Efficient Optical Communication Systems》
---
作者:
Jose Krause Perin
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Physics 物理学
二级分类:Applied Physics 应用物理学
分类描述:Applications of physics to new technology, including electronic devices, optics, photonics, microwaves, spintronics, advanced materials, metamaterials, nanotechnology, and energy sciences.
物理学在新技术中的应用,包括电子器件、光学、光子学、微波、自旋电子学、先进材料、超材料、纳米技术和能源科学。
--
---
英文摘要:
Increased traffic demands globally and in particular in short-reach links in data centers will require optical communication systems to continue scaling at an accelerated pace. Nevertheless, energy constraints start to limit the bit rate that can be practically transmitted over optical systems both at the shortest distances in data centers and at the longest distances in ultra-long submarine links. Short-reach links in data centers face strict constraints on power consumption, size, and cost, which will demand low-power solutions that scale to bit rates beyond 100 Gbit/s per wavelength, while accommodating increased losses due to longer fiber plant, multiplexing of more wavelengths, and possibly optical switching. At the longest distances, submarine optical cables longer than about 5,000 km face energy constraints due to power feed limits at the shores, which restricts the electrical power available to the undersea optical amplifiers, ultimately limiting the optical power and throughput per fiber. This dissertation presents strategies to mitigate these limitations. For short-reach links in data centers, we propose low-power coherent receiver architectures that completely avoid high-speed analog-to-digital converters and digital signal processors. For long-haul submarine links, we demonstrate how optimizing the channel power allocation under a constraint on the amplifier power maximizes the information-theoretic capacity per fiber.
---
PDF链接:
https://arxiv.org/pdf/1806.01945