摘要翻译:
我开发了一个随机实验的模型,有二元干预和二元结果。干预组和对照组的潜在结果导致四种类型的参与者。固定的想法,这样的结果是死亡,一些参与者将活着不管,其他人将被拯救,其他人将被杀死,其他人将死亡不管。这些潜在的结果类型是不可观察的。然而,我使用该模型来开发每种类型参与者数量的估计器。该模型依赖于实验中的随机化和演绎推理。我将该模型应用于一个重要的临床试验,PROWESS试验,并进行了蒙特卡罗模拟,与该试验的估计值校准。试验中减少的表格显示死亡率降低,这为FDA的批准提供了理由。然而,我发现干预措施每挽救三名参与者就杀死两名参与者。
---
英文标题:
《A Model of a Randomized Experiment with an Application to the PROWESS
  Clinical Trial》
---
作者:
Amanda Kowalski
---
最新提交年份:
2020
---
分类信息:
一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
  I develop a model of a randomized experiment with a binary intervention and a binary outcome. Potential outcomes in the intervention and control groups give rise to four types of participants. Fixing ideas such that the outcome is mortality, some participants would live regardless, others would be saved, others would be killed, and others would die regardless. These potential outcome types are not observable. However, I use the model to develop estimators of the number of participants of each type. The model relies on the randomization within the experiment and on deductive reasoning. I apply the model to an important clinical trial, the PROWESS trial, and I perform a Monte Carlo simulation calibrated to estimates from the trial. The reduced form from the trial shows a reduction in mortality, which provided a rationale for FDA approval. However, I find that the intervention killed two participants for every three it saved. 
---
PDF链接:
https://arxiv.org/pdf/1908.05810