摘要翻译:
数值分析了二元混合物中条纹的形成过程。该系统由两种尺寸的粒子组成,没有任何直接的相互作用。大粒子的重叠,被一个密集的小粒子系统所包围,导致大粒子之间的间接熵驱动相互作用。在外部驱动力的影响下,系统形成有序和条纹。条纹的平均宽度随时间呈对数增长,与驱动相互作用晶格气系统观察到的典型幂律时间增长相反。我们描述了这一行为的机制,并将对数增长归因于小粒子在随机势中的随机游动。
---
英文标题:
《Segregation in noninteracting binary mixture》
---
作者:
Filip Krzyzewski, Magdalena Zaluska-Kotur
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
---
英文摘要:
Process of stripe formation is analyzed numerically in a binary mixture. The system consists of particles of two sizes, without any direct mutual interactions. Overlapping of large particles, surrounded by a dense system of smaller particles induces indirect entropy driven interactions between large particles. Under an influence of an external driving force the system orders and stripes are formed. Mean width of stripes grows logarithmically with time, in contrast to a typical power law temporal increase observed for driven interacting lattice gas systems. We describe the mechanism responsible for this behavior and attribute the logarithmic growth to a random walk of large particles in a random potential due to the small ones.
---
PDF链接:
https://arxiv.org/pdf/708.0739