摘要翻译:
晚期钆增强心脏MRI(LGE-CMRI)检测心房颤动(AF)患者的心房瘢痕是一种有希望的分层、指导消融治疗和预测治疗成功的技术。瘢痕组织的可视化和量化需要从LGE-CMRI图像中分割左心房(LA)和高强度瘢痕区域。由于健康组织信号的消除、低信噪比和图像质量的限制,这两个分割任务具有挑战性。大多数方法需要人工监督和/或第二次明亮血液MRI采集来进行解剖分割。从一次LGE-CMRI采集中自动分割LA解剖和瘢痕组织的需求很高。在本研究中,我们提出了一种新的全自动多视点双任务(MVTT)递归注意力模型,该模型结合序贯学习和扩张残差学习,在LGE-CMRI图像上直接工作,通过一个创新的注意力模型同时分割LA(包括附着肺静脉)和描绘心房瘢痕。与其他最先进的方法相比,提出的MVTT取得了令人信服的改进,能够生成一个患者特定的解剖学和心房瘢痕评估模型。
---
英文标题:
《Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial
  Scars Segmentation》
---
作者:
Jun Chen, Guang Yang, Zhifan Gao, Hao Ni, Elsa Angelini, Raad
  Mohiaddin, Tom Wong, Yanping Zhang, Xiuquan Du, Heye Zhang, Jennifer Keegan,
  David Firmin
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
---
英文摘要:
  Late Gadolinium Enhanced Cardiac MRI (LGE-CMRI) for detecting atrial scars in atrial fibrillation (AF) patients has recently emerged as a promising technique to stratify patients, guide ablation therapy and predict treatment success. Visualisation and quantification of scar tissues require a segmentation of both the left atrium (LA) and the high intensity scar regions from LGE-CMRI images. These two segmentation tasks are challenging due to the cancelling of healthy tissue signal, low signal-to-noise ratio and often limited image quality in these patients. Most approaches require manual supervision and/or a second bright-blood MRI acquisition for anatomical segmentation. Segmenting both the LA anatomy and the scar tissues automatically from a single LGE-CMRI acquisition is highly in demand. In this study, we proposed a novel fully automated multiview two-task (MVTT) recursive attention model working directly on LGE-CMRI images that combines a sequential learning and a dilated residual learning to segment the LA (including attached pulmonary veins) and delineate the atrial scars simultaneously via an innovative attention model. Compared to other state-of-the-art methods, the proposed MVTT achieves compelling improvement, enabling to generate a patient-specific anatomical and atrial scar assessment model. 
---
PDF链接:
https://arxiv.org/pdf/1806.04597