全部版块 我的主页
论坛 经济学人 二区 外文文献专区
368 0
2022-03-22
摘要翻译:
研究了Fano流形上沿Kahler Ricci流的一些估计。利用这些估计,我们直接证明了当标准类的$\alpha$-不变量大于$\frac{n}{n+1}$时,Kahler Ricci流的收敛性。应用这些收敛性定理,我们可以给出这类Fano流形上的Calabi猜想的流证明。特别是用流方法证明了许多Fano曲面上Kahler Einstein度量的存在性。注意,这个几何结论(基于同样的假设)是由G.Tian在较早的时候通过椭圆法建立的。然而,一个基于Kahler Ricci流的新证明本身应该仍然很有趣。
---
英文标题:
《Remarks on Kahler Ricci Flow》
---
作者:
Xiuxiong Chen, Bing Wang
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Differential Geometry        微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We study some estimates along the Kahler Ricci flow on Fano manifolds. Using these estimates, we show the convergence of Kahler Ricci flow directly if the $\alpha$-invariant of the canonical class is greater than $\frac{n}{n+1}$. Applying these convergence theorems, we can give a flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of Kahler Einstein metrics on a lot of Fano surfaces can be proved by flow method. Note that this geometric conclusion (based on the same assumption) was established earlier via elliptic method by G. Tian. However, a new proof based on Kahler Ricci flow should be still interesting in its own right.
---
PDF链接:
https://arxiv.org/pdf/0809.3963
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群