摘要翻译:
我们研究了一个具有不确定市场影响的最优执行问题,以导出一个更符合实际的市场模型。我们构造了一个离散时间模型作为最优执行的值函数。市场影响被表述为随执行量增加的确定性部分和正的随机噪声部分的乘积。然后,我们导出了一个连续时间模型作为一个离散时间值函数的极限。我们发现连续时间值函数是一个带有Levy过程的随机控制问题。
---
英文标题:
《Mathematical Formulation of an Optimal Execution Problem with Uncertain
Market Impact》
---
作者:
Kensuke Ishitani and Takashi Kato
---
最新提交年份:
2015
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We study an optimal execution problem with uncertain market impact to derive a more realistic market model. We construct a discrete-time model as a value function for optimal execution. Market impact is formulated as the product of a deterministic part increasing with execution volume and a positive stochastic noise part. Then, we derive a continuous-time model as a limit of a discrete-time value function. We find that the continuous-time value function is characterized by a stochastic control problem with a Levy process.
---
PDF链接:
https://arxiv.org/pdf/1301.6485