全部版块 我的主页
论坛 经济学人 二区 外文文献专区
241 0
2022-03-22
摘要翻译:
这些文献规定了许多风格的广泛形式的游戏,最终我希望能正式翻译这些风格的游戏。为此,本文定义了$\mathbf{NCF}$,这是节点和选择表单的类别。范畴的对象基本上是任何文体中的广泛形式,范畴的同构是为了符合文献中为数不多的特殊文体等价。此外,本文开发了两个完整的子类别:$\mathbf{CsqF}$用于节点为选择序列的表单;$\mathbf{CsetF}$用于节点为选择集的表单。我展示了$\mathbf{NCF}$在$\mathbf{CsqF}$中“同构封闭”,即每个$\mathbf{NCF}$表单都与$\mathbf{CsqF}$表单同构。类似地,我展示了$\mathbf{CsqF_{\tilde a}}$同构地包含在$\mathbf{CsetF}$中,因为每个没有心不在焉的$\mathbf{CsetF}$表单都与$\mathbf{CsetF}$表单同构。这些对话被发现几乎是立即的,由此产生的等价统一并简化了Kline and Luckraz2016和Streufert2019中的两个即席风格等价。除了较大的议程之外,本文还做出了三个实际贡献。通过[1]同构不变性的自然概念和[2]同构封闭的可组合性,使风格等价变得更容易导出。此外,[3]还系统地推导了等价性的一些新结果。
---
英文标题:
《The Category of Node-and-Choice Forms, with Subcategories for
  Choice-Sequence Forms and Choice-Set Forms》
---
作者:
Peter A. Streufert (Western University)
---
最新提交年份:
2019
---
分类信息:

一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Computer Science        计算机科学
二级分类:Logic in Computer Science        计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Mathematics        数学
二级分类:Category Theory        范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--

---
英文摘要:
  The literature specifies extensive-form games in many styles, and eventually I hope to formally translate games across those styles. Toward that end, this paper defines $\mathbf{NCF}$, the category of node-and-choice forms. The category's objects are extensive forms in essentially any style, and the category's isomorphisms are made to accord with the literature's small handful of ad hoc style equivalences.   Further, this paper develops two full subcategories: $\mathbf{CsqF}$ for forms whose nodes are choice-sequences, and $\mathbf{CsetF}$ for forms whose nodes are choice-sets. I show that $\mathbf{NCF}$ is "isomorphically enclosed" in $\mathbf{CsqF}$ in the sense that each $\mathbf{NCF}$ form is isomorphic to a $\mathbf{CsqF}$ form. Similarly, I show that $\mathbf{CsqF_{\tilde a}}$ is isomorphically enclosed in $\mathbf{CsetF}$ in the sense that each $\mathbf{CsqF}$ form with no-absentmindedness is isomorphic to a $\mathbf{CsetF}$ form. The converses are found to be almost immediate, and the resulting equivalences unify and simplify two ad hoc style equivalences in Kline and Luckraz 2016 and Streufert 2019.   Aside from the larger agenda, this paper already makes three practical contributions. Style equivalences are made easier to derive by [1] a natural concept of isomorphic invariance and [2] the composability of isomorphic enclosures. In addition, [3] some new consequences of equivalence are systematically deduced.
---
PDF链接:
https://arxiv.org/pdf/1904.12085
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群