摘要翻译:
交易对手信贷限额(CCL)是金融机构为限制其对特定交易对手的最大可能敞口而施加的限额。CCLs通过选择性地分散风险,帮助机构减轻对手的信贷风险。本文分析了CCLs在日常交易中如何影响机构为其交易支付的价格。我们研究了一个来自外汇现货市场大型电子交易平台的高质量数据集,该数据集使机构能够应用CCLS。我们从实证上发现,在这一数据中,CCLs对绝大多数交易几乎没有影响。我们还使用一个新的交易模型来研究CCLs的影响。通过用不同的底层CCL网络模拟我们的模型,我们强调CCL在某些情况下可能会产生重大影响。
---
英文标题:
《Counterparty Credit Limits: The Impact of a Risk-Mitigation Measure on
  Everyday Trading》
---
作者:
Martin D. Gould, Nikolaus Hautsch, Sam D. Howison, and Mason A. Porter
---
最新提交年份:
2021
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics        统计学
二级分类:Computation        计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
---
英文摘要:
  A counterparty credit limit (CCL) is a limit that is imposed by a financial institution to cap its maximum possible exposure to a specified counterparty. CCLs help institutions to mitigate counterparty credit risk via selective diversification of their exposures. In this paper, we analyze how CCLs impact the prices that institutions pay for their trades during everyday trading. We study a high-quality data set from a large electronic trading platform in the foreign exchange spot market, which enables institutions to apply CCLs. We find empirically that CCLs had little impact on the vast majority of trades in this data. We also study the impact of CCLs using a new model of trading. By simulating our model with different underlying CCL networks, we highlight that CCLs can have a major impact in some situations. 
---
PDF链接:
https://arxiv.org/pdf/1709.08238