摘要翻译:
我们提出了一种矩阵分解技术,将患者群体的静息状态fMRI(rs-fMRI)相关矩阵分解为一个稀疏的代表性子网络集,以秩一外积为模型。子网络采用患者特有的非负系数进行组合;这些系数也用于建模,并随后通过线性回归预测给定患者的临床严重程度。我们的生成-鉴别框架能够利用rs-fMRI相关矩阵的结构来捕捉群体水平的影响,同时考虑患者的变异性。我们使用十倍交叉验证来证明我们的模型对58名自闭症谱系障碍患者的预测能力。我们的方法优于经典的半监督框架,该框架对相关特征进行降维,然后进行非线性回归来预测临床评分。
---
英文标题:
《A Generative-Discriminative Basis Learning Framework to Predict Clinical
Severity from Resting State Functional MRI Data》
---
作者:
Niharika Shimona D'Souza, Mary Beth Nebel, Nicholas Wymbs, Stewart
Mostofsky, Archana Venkataraman
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We propose a matrix factorization technique that decomposes the resting state fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set of representative subnetworks, as modeled by rank one outer products. The subnetworks are combined using patient specific non-negative coefficients; these coefficients are also used to model, and subsequently predict the clinical severity of a given patient via a linear regression. Our generative-discriminative framework is able to exploit the structure of rs-fMRI correlation matrices to capture group level effects, while simultaneously accounting for patient variability. We employ ten fold cross validation to demonstrate the predictive power of our model on a cohort of fifty eight patients diagnosed with Autism Spectrum Disorder. Our method outperforms classical semi-supervised frameworks, which perform dimensionality reduction on the correlation features followed by non-linear regression to predict the clinical scores.
---
PDF链接:
https://arxiv.org/pdf/1807.09319