摘要翻译:
我们导出了一种微扰方法来研究在大惯性极限下,固体颗粒在光滑的、不可压缩的、有限时间相关的随机速度场中的动力学。我们用Stokes数的平方根的幂展开,定义为粒子速度的弛豫时间与速度场的相关时间之比。我们在这个极限中描述了粒子悬浮液的剩余浓度涨落,并确定了聚类对碰撞统计量的贡献。对于浓度涨落和碰撞速度,我们分析了它们与可压缩一维情形的差异。
---
英文标题:
《Perturbation theory for large Stokes number particles in random velocity
fields》
---
作者:
Piero Olla and Maria Raffaella Vuolo
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
---
英文摘要:
We derive a perturbative approach to study, in the large inertia limit, the dynamics of solid particles in a smooth, incompressible and finite-time correlated random velocity field. We carry on an expansion in powers of the inverse square root of the Stokes number, defined as the ratio of the relaxation time for the particle velocities and the correlation time of the velocity field. We describe in this limit the residual concentration fluctuations of the particle suspension, and determine the contribution to the collision statistics produced by clustering. For both concentration fluctuations and collision velocities, we analyze the differences with the compressible one-dimensional case.
---
PDF链接:
https://arxiv.org/pdf/801.3204