摘要翻译:
我们提出了一个连续时间事件的概率模型,其中每个事件触发后续事件的泊松过程。因此,观测事件的集合被建模为泊松过程的叠加。在此模型下,采用EM算法进行有效的推理是可行的。此外,EM算法可以实现为分布式算法,允许模型应用于非常大的数据集。我们将这些技术应用于Twitter消息的建模和维基百科的修订历史。
---
英文标题:
《Modeling Events with Cascades of Poisson Processes》
---
作者:
Aleksandr Simma, Michael I. Jordan
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
We present a probabilistic model of events in continuous time in which each event triggers a Poisson process of successor events. The ensemble of observed events is thereby modeled as a superposition of Poisson processes. Efficient inference is feasible under this model with an EM algorithm. Moreover, the EM algorithm can be implemented as a distributed algorithm, permitting the model to be applied to very large datasets. We apply these techniques to the modeling of Twitter messages and the revision history of Wikipedia.
---
PDF链接:
https://arxiv.org/pdf/1203.3516