摘要翻译:
提出了一种利用调频连续波(FMCW)雷达的高度量化1比特测量值进行二维目标定位的新方案。雷达信号的量化会引起定位伪影,我们通过在未量化的观测信号中加入抖动来消除这一限制。然后,我们采用投影反投影算法从抖动量化雷达观测值中估计目标的距离和角度,随着观测值的增加,重建误差可以证明是衰减的。仿真结果表明,在无噪声条件下,抖动方案的精度与非抖动方案和完全32位分辨率相比较,在严重的比特率降低情况下。最后,用雷达传感器进行了实际测量,验证了所提出的量化抖动方案在实际条件下的有效性和性能。
---
英文标题:
《1-bit Localization Scheme for Radar using Dithered Quantized Compressed
Sensing》
---
作者:
Thomas Feuillen, Chunlei Xu, Luc Vandendorpe, and Laurent Jacques
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We present a novel scheme allowing for 2D target localization using highly quantized 1-bit measurements from a Frequency Modulated Continuous Wave (FMCW) radar with two receiving antennas. Quantization of radar signals introduces localization artifacts, we remove this limitation by inserting a dithering on the unquantized observations. We then adapt the projected back projection algorithm to estimate both the range and angle of targets from the dithered quantized radar observations, with provably decaying reconstruction error when the number of observations increases. Simulations are performed to highlight the accuracy of the dithered scheme in noiseless conditions when compared to the non-dithered and full 32-bit resolution under severe bit-rate reduction. Finally, measurements are performed using a radar sensor to demonstrate the effectiveness and performances of the proposed quantized dithered scheme in real conditions.
---
PDF链接:
https://arxiv.org/pdf/1806.05408