全部版块 我的主页
论坛 经济学人 二区 外文文献专区
390 0
2022-03-26
摘要翻译:
我们研究了一个附加于多个热浴和/或在外力驱动下的一般随机系统中实现的非平衡稳态。从详细的涨落定理出发,导出了相应的平稳分布的简明的暗示性表达式,这些表达式在热力学力的二阶范围内都是正确的。微态$\eta$的概率与$\exp[{\phi}(\eta)]$成正比,其中${\phi}(\eta)=-\sum_k\beta_k\mathcal{E}_k(\eta)$是超额熵变。这里$\mathcal{E}_k(\eta)$是反向温度为$\beta_k$的第k$个热浴的两种条件路径系综的平均值之差。我们的表达式可以在非平衡态的实验中得到验证,例如在介观系统中。
---
英文标题:
《An expression for stationary distribution in nonequilibrium steady state》
---
作者:
Teruhisa S. Komatsu and Naoko Nakagawa
---
最新提交年份:
2007
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths and/or driven by an external force. Starting from the detailed fluctuation theorem we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate $\eta$ is proportional to $\exp[{\Phi}(\eta)]$ where ${\Phi}(\eta)=-\sum_k\beta_k\mathcal{E}_k(\eta)$ is the excess entropy change. Here $\mathcal{E}_k(\eta)$ is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the $k$-th heat bath whose inverse temperature is $\beta_k$. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.
---
PDF链接:
https://arxiv.org/pdf/708.3158
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群