摘要翻译:
协同智能是在移动云基础设施中高效部署深度
神经网络的新范例。通过在移动和云之间划分网络,可以分配计算工作负载,使得系统的总能量和/或延迟最小化。然而,这需要将深度特征数据从移动端发送到云,以便进行推断。本文研究了深度特征数据与自然图像数据的差异,提出了一种简单有效的近无损深度特征压缩器。与HEVC-Intra相比,该方法的比特率降低了5%,与其他流行的图像编解码器相比,该方法的比特率降低了5%。最后,我们提出了一种从云中压缩的深层特征重建输入图像的方法,该方法可以补充深层模型的推断。
---
英文标题:
《Near-Lossless Deep Feature Compression for Collaborative Intelligence》
---
作者:
Hyomin Choi and Ivan V. Bajic
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
---
英文摘要:
Collaborative intelligence is a new paradigm for efficient deployment of deep neural networks across the mobile-cloud infrastructure. By dividing the network between the mobile and the cloud, it is possible to distribute the computational workload such that the overall energy and/or latency of the system is minimized. However, this necessitates sending deep feature data from the mobile to the cloud in order to perform inference. In this work, we examine the differences between the deep feature data and natural image data, and propose a simple and effective near-lossless deep feature compressor. The proposed method achieves up to 5% bit rate reduction compared to HEVC-Intra and even more against other popular image codecs. Finally, we suggest an approach for reconstructing the input image from compressed deep features in the cloud, that could serve to supplement the inference performed by the deep model.
---
PDF链接:
https://arxiv.org/pdf/1804.09963