摘要翻译:
序列变化诊断是检测和识别随机序列分布中突然而不可观测的变化的联合问题。在这个问题中,I.I.D.序列的公共概率定律。随机变量在某个无序的时间突然改变为有限的许多备选方案中的一个。这个无序的时间标志着一个新制度的开始,其指纹是新的观察定律。混乱的时间和新政权的身份都是未知和不可观察的。目标是尽快发现政权更迭,同时尽可能准确地确定其身份。及时和正确的诊断对于快速执行最适当的措施以应对新的制度是至关重要的,就像工业过程中的故障检测和隔离,以及国防中的目标检测和识别一样。该问题是在贝叶斯框架下提出的。找到了一个最优的序贯决策策略,并描述了精确的数值方案来实现该策略。通过数值算例说明了最优策略的几何性质。作为特例,解决了传统的贝叶斯变化检测和贝叶斯序贯多假设检验问题。此外,本文还对假死系统中部件故障的检测与识别问题给出了一个解决方案。
---
英文标题:
《Bayesian sequential change diagnosis》
---
作者:
Savas Dayanik, Christian Goulding, H. Vincent Poor
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
  Sequential change diagnosis is the joint problem of detection and identification of a sudden and unobservable change in the distribution of a random sequence. In this problem, the common probability law of a sequence of i.i.d. random variables suddenly changes at some disorder time to one of finitely many alternatives. This disorder time marks the start of a new regime, whose fingerprint is the new law of observations. Both the disorder time and the identity of the new regime are unknown and unobservable. The objective is to detect the regime-change as soon as possible, and, at the same time, to determine its identity as accurately as possible. Prompt and correct diagnosis is crucial for quick execution of the most appropriate measures in response to the new regime, as in fault detection and isolation in industrial processes, and target detection and identification in national defense. The problem is formulated in a Bayesian framework. An optimal sequential decision strategy is found, and an accurate numerical scheme is described for its implementation. Geometrical properties of the optimal strategy are illustrated via numerical examples. The traditional problems of Bayesian change-detection and Bayesian sequential multi-hypothesis testing are solved as special cases. In addition, a solution is obtained for the problem of detection and identification of component failure(s) in a system with suspended animation. 
---
PDF链接:
https://arxiv.org/pdf/710.4847