摘要翻译:
g属Deligne-Mumford稳定曲线的模叠加允许分层,使得属于一个层的曲线的节点数是常数。对应于3g-4节点曲线的地层不可约分量是一维子叠加。我们展示了它们是如何与(置换类)尖稳定曲线的模栈相关联的。利用这一点,我们以一种新的方式构造这个层的所有组成部分作为商栈。
---
英文标题:
《The one-dimensional stratum in the boundary of the moduli stack of
stable curves》
---
作者:
Joerg Zintl
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The moduli stack of Deligne-Mumford stable curves of genus g admits a stratification, so that the number of nodes of the curves belonging to one stratum is constant. The irreducible components of the stratum corresponding to curves with exactly 3g-4 nodes are one-dimensional substacks. We show how they can be related to moduli stacks of (permutation classes of) pointed stable curves. Using this, we construct all components of this stratum in a new way as quotient stacks.
---
PDF链接:
https://arxiv.org/pdf/0712.4251